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A high-order finite volume convection scheme, in conjunction with a monotonicity
preserving flux-limiter is applied to a combined tokamak edge plasma/Navier—Stokes
neutral transport model. This is a highly nonlinear system of convection—diffusion—
reaction equations which describe the partially ionized boundary layer plasma of a
tokamak fusion reactor. The solutions of interest contain a sharp ionization front.
The improved convective discretization is applied within the context of the existing
matrix-free Newton—Krylov solution algorithm. More accurate convective differenc-
ing is shown to make a significant difference on a problem of current interest. It is
demonstrated that a matrix-free Newton—Krylov implementation, where the precon-
ditioner is derived using first-order upwind convective differencing, provides savings
in both memory requirements and CPU time; 1998 Academic Press

Key Words:high-order convective differencing, Newton—Krylov methods, toka-
mak divertor plasma.

1. INTRODUCTION

In this paper, we study the application of a high-order, monotone, convection scher
an advanced fluid transport model of a partially ionized tokamak edge plasma. The tok
is atoroidally shaped magnetic confinement fusion device [1], and the tokamak edge pl
fluid equations are a highly nonlinear set of convection—diffusion—reaction equations w
describe the boundary layer plasma of this device. They contain widely varying time
spatial scales, and the transport coefficients and reaction rates are strong functions of ¢
and temperature. These equations describe the flow of plasma particles and energy fr
edge of the reactor core into what is called the divertor region, which serves as the ch.
particle exhaust system.

The original solution method applied to the two-dimensional edge plasma fluid e
tions was a pressure-correction, SIMPLE [2] based, segregated solution algorithm [3]
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density, velocity, and temperature as dependent variables. A staggered grid and finite vol
discretization were employed, with thermodynamic variables at cell centers and velocitie
cell faces. Convective differencing was done with a first-order method such as pure upw
the hybrid method, or the power-law method [2]. More recently a fully coupled Newtor
Krylov algorithm has been developed for improved nonlinear convergence performal
[4-7]. However, the dependent variables, the staggered grid, and the first-order conve:
differencing have been maintained. In this paper we study the application of a high-or
monotone, convection scheme within the context of the existing staggered grid and de
dentvariables, as well as the existing Newton—Krylov algorithm. The high-order convect
scheme is applied to an advanced transport model for recombining divertor plasmas w
includes a Navier—Stokes treatment of the neutral component [8].

For discretization of the convective terms, the so-called QUICK (quadratic upstre:
interpolation for convective kinematics) scheme is used [9]. This is an upwind bias
3-point interpolation scheme for evaluating cell face values from cell centered valu
In order to preserve monotonicity, the QUICK scheme is flux-limited. The flux-limiting
strategy we employ is the SMART (sharp and monotonic algorithm for realistic transpc
scheme of Gaskel and Lau [10]. Standard central differencing is used for the diffusive flu

The implementation of higher-order, monotone, convection schemes within impli
solution algorithms has been met with some challenges [11, 12]. These challenges are
sult of the increased storage due to a larger numerical stencil, lack of diagonal dominant
the solution matrix, and lack of “analytical differentiability” of some of the limiters. We will
demonstrate that a matrix-free Newton—Krylov algorithm provides a natural frame wc
for the inclusion of higher order, monotone, convection schemes. It will also be dem
strated that including higher order convective differencing can make a significant imp
on divertor simulations of current interest.

The remainder of this paper is outlined as follows. Section 2 discusses the convec
discretization, the Newton—Krylov algorithm, and how they fit together. While the col
vective differencing algorithm used in this paper is not new, its use on the edge plas
fluid equations and within the edge plasma modeling community is new. For these reas
we present some details of the discretization. Section 3 describes the physical model
geometry. Section 4 contains computational results and looks at algorithm performal
and Section 5 provides a summary and conclusions.

2. CONVECTIVE DISCRETIZATION AND SOLUTION ALGORITHM

2.1. Convective Discretization

With the motivation to clearly illustrate the implementation of this discretization w
go into detail on a one-dimensional (1D) steady-state convection—diffusion—reaction ec
tion. This material is not new but is included for self-consistency. Consider finite volur
discretization of

BY) 9p?
uo - Dﬁ = S(¢), 1)

with u the convecting velocityD a diffusion coefficientS a source/sink function, angl
the dependent variable. The finite volume method balances fluxes in and out of cell fe



CONVECTION SCHEME FOR DIVERTOR PLASMAS 475

dCEC
‘ volg ‘
J J i
-/ -/ N\
dw dc b5
Ay A,
U Ue
Jw Je
FIG. 1. Schematic representation of 1D grid.
with the sources or sinks resulting in
‘Je - ‘Jw = VOIC ' S(¢C)7 (2)
where
Je = Ae[ued); —D-(¢e — ¢C)/dx] (3)
and
Jo = Ay [Uyd) — D - (dc — pw)/dX]. 4)

This can be seen schematically in Fig. 1. Upper case letters denote cell-centered qua
and lower case letters denote cell face quantities (ivalD= dx). The face values of the
dependentvariablemust be determined for use in the convective operator. For flow direc
to the right, QUICK [9] evaluates the east face value as

¢s = (pc + ¢e)/2 — (e — 2¢c + dw)/8. %)

QUICK itself is not monotonic, which means thgjt is not guaranteed to be boundedday
and¢c. Since monotonicity is a desired property, a flux-limiter must be applied to ens
monotonicity, and in this paper the so-called SMART scheme [10] is employed for t
purpose. The SMART limiter is first demonstrated graphically, with the aid of Lenar
normalized variable diagram (NVD) [10]. Defining two nondimensional variables,

_ Pet+dw

b = 6
oy pa—— (6)
and
”CZM’ @)
PE — dw

the NVD, with the SMART limiter, is shown in Fig. 2. The ligg = ¢, is first-order upwind
differencing, the dashed line is QUICK differencing, and the dashed double dot line is
SMART limiter. Anywhere along the upwind line or within the triangle AE D, ensures
a choice ofg} which is bounded, i.e. monotone [10]. Givé@, and the piecewise linear
SMART limiter we have a unique value fgr,, and thuspy.
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FIG. 2. Normalized variable diagram.

Next some insight is given as to the structure of the limiter. In choosing a face value fc
convected variable, one possible choice is to use QUICK inside the triah @& O), and
first-order upwind (the solid line) outside the triangle. However, this may cause proble
aroundg, = 0 and forg < ¢ < 1. An indeterminacy resuits arousd = 0 since one can
get two distinct values ag, — 0" and¢. — 0~. Following the prescription of Gaskell
and Lau [10] the line segmeB is followed, whereB = (3. ). Inthe regior? < ¢, <1,
choosingg ; =1 is equivalent to downwinding and can result in a loss of couplingcof
(the cell center value) to the volume convective flux balance (i.e., nearly zero diagonal
convective dominated flow). To avoid this problem the line segr@dnis followed where
the coordinates o€ are chosen so as to define the slop&€d equal to 0.3. For more
details see Gaskell and Lau [10]. This prescription defines a unique path through the N
and, thus, a unique value ¢f giveng,. Other choices are possible for the poiBtandC,
but we do not address that issue here.

Given this detail, we now demonstrate how these ideas are implemented algorithmic:
Again, this is not new material [13] but it is included for self-consistency. The followin
function is defined

fmede1, g2, ¢3) = minimax @y, ¢2), Maxgz, Min(P1, $2))]. 8

Depending on the exact locations of poisindC, line segmenAB has a slope we will
call slpl and line segmer€ D has a slope we will calilp2. First, three temporary values
of %, based on the QUICK line, line segmehB, and line segmer D, respectively are
defined

dmp = (dc + 9E)/2 — (P — 2¢c + dw)/8, )
dme = SIpL* ¢c + (1 — sIpl) * ¢w, (10)
dme = SIP2 * g + (1 — slp2) * ¢c. (11)

Next, a temporary value is chosen basedredoperating onpumpe, ¢ume, and the first
order upwind valuegpc,

dmp = fmedoc, dimpe, dimp)- (12)
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Then a final determination is made between the QUICK line, first-order upwinding, :
¢tmp4,

¢; = fmec(d)Ca ¢tmp4’ ¢tmp1)- (13)

At this point a unique face valug;, has been chosen.

2.2. Solution Algorithm

We briefly outline the solution algorithm with more details given in Refs. [6, 7]. Applic:
tion of Newton’s method requires the solution of the linear sys##x* = — F(x*), where
Jis the Jacobian matri¥(x) is the nonlinear system of equations, arid the state vector.
The new solution approximation at iteratiény- 1 is obtained fromx<*t = xk 4 ssx¥,
wheres is a damping scalar, which is adaptively chosen to be less than or equal to on
pseudo-transient relaxation technique is used to increase the radius of convergence, a
time step is adaptively varied based upon the current level of nonlinear convergence.

We use the restarted generalized minimal residual (GMRES) algorithm [14] to solve
linear problem on each Newton step. The dimension of the Krylov subspace was ch
to be 40 for the calculations presented here (i.e., GMRES (40)), and the linear syste
preconditioned with an ILU-based preconditioner. An “inexact” Newton’s method line
convergence criteria is used. Specifically, the GMRES iteration is assumed converged:

946X + FOX9 112
IF(X)12

(14)

The preconditioned GMRES algorithm requires the action of the Jacobian only in
form of matrix—vector products, which may be approximated by [15],

_ Fx+ev) —F(x)

Jv (15)
€
wherev is a Krylov vector (in GMRES), and is a small perturbation given by
1 N
€= Niviz mZ=1<a|xm| +a), (16)

whereN is the system dimension ardis a constant whose magnitude is on the order «
the square root of machine roundoff.

Equation (15) enables the action of the Jacobian without explicitly forming or stor
the matrix. This property can be extremely advantageous in problems where forming
Jacobian represents a significant fraction of the total CPU time and/or storing the Jacc
matrix is prohibitive. In many instances, however, the Jacobian or parts thereof are
needed to generate an effective preconditioning maRixn this situation, one of the
primary advantages of this matrix-free Newton—Krylovimplementation may lie in reduc
the total number of required discrete function evaluations by amortizing the cost of forn
the preconditioner over several Newton steps [6, 7].

When considering the use of high-order, monotone, convection schemes with a 1
implicit Newton’s method, the following concerns arise:
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1. The numerical stencil is larger, thus requiring more storage forbatidP.

2. The matrixJ is potentially less diagonally dominant, resulting in a less stable inve
sion P,

3. The flux-limiter may be nondifferentiable, analytically.
Within the matrix-free algorithm storage is only required ®rnot J, one is required
to invert P, not J, and one only needs to evaluate some approximatichttodefineP.

Given this information, consider the option of forming the preconditioner using a first-orc
upwind convection scheme,

JP v ~

Fhigh(X + €PjowV) — Fhigh(X)
; .

(17)

Equation (17) is a right preconditioned version of Eq. (Fpjgn(X) denotes the nonlinear
function evaluated with a high-order, monotone, discretization Pagjddenotes the inver-
sion of a preconditioner formed with first-order upwinding. This option will result in les
storage and a potentially more stable inversion, in contrast to

JP v ~

N Fhigh(X + ePg;hv) — Fhignh(X) 18)

€

where the preconditioneP] is evaluated using the same discretization as the nonline
residual E(x)). The question of interest is “does the mismatch between the Jacobian :
preconditioner cause a significant increase in the number of Krylov iteration per New!
iteration?” Note that this approximation does not compromise the nonlinear converge
characteristics, although it may produce a deterioration in the linear convergence rate.
technique has proven successful for the compressible Euler equations [16], the inc
pressible Navier—Stokes equation [17], and combustion problems [18]. Both matrix-f
implementations above, Eq. (17) and Eq. (18), involve a fully implicit treatment of tt
high-order differencing. An additional option is to consider a standard Newton—Krylc
method applied in a defect-correction mode [19],

JiowdX = —Fhigh(X). (19)

This mismatch between the Jacobian and the residual will result in degradation of
nonlinear convergence rate and possibly prevent nonlinear convergence. We will com|
the performance of all of these options. The method of Eq. (17) will be referedlipRs

the method of Eq. (18) will be referred to dg Py, and the method of Eq. (19) will be
referred to as)_ P..

3. PHYSICS MODEL AND EQUATION SYSTEM

The tokamak edge plasma is made up of hydrogen ions, electrons, impurity ions fr
the vessel structure, such as carbon, as well as hydrogen and impurity neutral atoms
molecules. The system of equations solved in this paper only models hydrogen ions, at
and electrons. For more details regarding the equation system and boundary conditions
[8]). The following equations are solved on a two-dimensiamaly) Cartesian grid after
they are first nondimensionalized to improve scaling:
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Plasma continuity,

an;
a_tl + V- (NUi) = vienNo — Vrechi; (20)
Neutral continuity,
an
a_to + V- (NgUop) = —VionNo + Vrechi; (21)
lon parallel momentum,
amnu; . B« (0B 9P
—— 4+ Vv.-mnUiu — 7 -VU) = —— [ — 4+ —
P +V.-MmnUjy; — 5 1 5 8x+8x
~+ VionMNoUjjo — VrecMM Uy + vi_nMn (Ujo — Uy); (22)

Neutral vector momentum (three components),

omnU
ot °yv. (MnUoUo) = V - 7 j — vienMMNoUp + vieeMn U — vi_nmn (Uo — Ui);
(23)
lon + neutral internal energy,
a /3 3 L -
m E(ni +Nno)Tw | +V- ETH (NiUi +noUo) — (ki + lko) - VTh
=—(RV-U + POV'U0)+Keq(Te_TH)§ (24)
Electron internal energy,
a /(3 3 ~
ﬁ (EneTe> =+ V. (Eneu| Te — Ke - VTe>
= —PFeV - Uj — keq(Te — Th) — I p(Novion — Nivrec) — Lrad. (25)

Here,n; is the ion number density, is the electron number density (equahtcassuming
quasi-neutrality)n, is the neutral atom number density.is the parallel ion velocity along
the total magnetic fieldg), with the parallel direction being a combination of thendz
directions, i.e.B = BxX+ B,z. uis thex-direction ion velocity which is equal t@By/B)u;,
whereB, /B is the magnetic field pitch: is they-direction ion velocity which is obtained
from a diffusive approximatiomv = — D, (an/ay) [8]. w is thez-direction ion velocity
which is equal tqB,/B)uy. Thus, the Cartesian ion velocity is givenby=uX + vy +wz.
Ambipolar flow is assumed so that the electron velocity is equal to the ion veltgitg.
the neutral atom velocity, withd, = uX + vo¥ + we2. M is the ion/atom massly is
the ion/atom temperaturdy is the electron temperature. The equations of state give 1
following relations for pressure®. =nTe; P, =n;i Ty; and P, =ngTy. vion and v are
the ionization and recombination frequencies, ang, is the ion—atom elastic collision
frequency.; is the viscosityx is the thermal conductivity; j is the neutral (atom) fluid
stress tensor, and is a thermal energy transfer coefficient. The viscosities and thern
conductivities for the plasma are modeled as diagonal tensors, iy, due to the strong
magnetic field. The parallel transport coefficients are classical Braginskii [20], and the
dial transport coefficients are given iy, = input constantiy; = n; xi, Ky,e = NeXe, With
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Xi» Xe= input constantsyy =nimy,, n, =input constantl is the ionization potential
energy of a hydrogen atom (13.6 eV), abgq represents energy loss due to atomic line
radiation. Because we solve for three components of neutral momentum there is a tot
eight equations with the dependant variables bajngo, uy, Uo, v, wo, T andTe. These
equations are strongly coupled through nonlinear source/sink terms which represent th
fects of ionization, recombination, ion-neutral elastic collisions, and ion—electron coulor
collisions. The ionization and recombination rates are two-dimensional table lookup fu
tions of plasma density and electron temperature with collisional-radiative corrections. -
problem exhibits large spreads in time scales and space scales. For instance, the rati
tween the electron thermal conduction time scale aloimthe “hot” upstream region (fast
time time scale) and plasma diffusion in tiealirection (slow time scale) can be as large
as 1x 10P. The ratio between the poloidal length of the simulation region and the width
an ionization front [8] can be as large ax110%.

4. COMPUTATIONAL RESULTS

Figure 3 presents the geometry for model problem 1. This is a simplified, Cartes
representation of the right half-plane of the poloidal cross section of a single null div
tor. This simplified representation invokes many assumptions, including both toroidal ¢
poloidal symmetry. As such, this geometry is an idealized representation of the transpo
particles and energy from the core region to the divertor plate. The plasma density is fi
at the “core” boundary along with ion and electron energy flows. No mass or energy fl
is allowed to exit the symmetry plane (left boundary) or the wall (top) boundary. Plast
energy can exit the problem at the divertor plate according to prescribed sheath boun
conditions [8], or through a volumetric loss term that represents atomic line radiation. .
plasma that flows into the divertor plate is assumed to recombine and is redirected back
the problem as a hydrogen atom flux. The total polo{aallength is 1 m, 25 cm from the
null point to the strike point (the intersection of the separatrix and the divertor plate). T
overall radial(y) width is 5 cm, 4 cm from the separatrix to the outer wall. Figure 4 is th
geometry for model problem 2. The same type of boundary conditions are used here."
geometry is larger with an expanded slot region and baffles in the slot to contain the net

Radial direction

lae

1
1
1
ore ] Poloidal
! direction
F+—fo.25m|—~
| [1.0m | I

FIG. 3. Schematic representation of model problem 1 geometry.
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FIG. 4. Schematic representation of model problem 2 geometry.

flow. This is the type of geometry which has been used in Ref. [21]. The total poloi
length (L) is 2 m, 50 cm from the null point to the strike poirit4). The overall radial
width is 11 cm to the left of the null pointu(ore + we) and 20 cm to the right of the null
point (wpr + we). Twenty-five centimeters separate the baffle location and the divertor pl
in the poloidal direction ().

4.1. Probleml

This problem has been studied extensively in Ref. [8]. Relatively speaking, itis a f
upstream (core) density, low power problem on a small geometry. In this problem the «
density and temperatures were fixeghat 1.5 x 10°°m3, T,= Ty =40eV, and the radial
transport coefficients werB, = 0.5, xj = xe=0.5, n, =0.2. We first consider the algo-
rithmic performance on this problem, and then we examine the physical solution struc
and the effect of improved differencing.

Table 1 presents memory requirements, iteration requirements, and CPU time for pro
1 ona64x 32 grid starting with a poor initial guess. The grid is uniform inytdérection and
nonuniform in thex direction with 44 grid cells in the last 25 cm. The initial guess, while nc
aconsistent solution to the equations, has properly directed gradients. In this problem, u
otherwise stated, a new Jacobian is formed only every 10 Newton iteration to evaluate ¢

TABLE 1
Algorithm Performance Data for Problem 1, Starting from a Poor Initial Guess on a 64 x 32
Grid (ILU (1) Preconditioning, v« =5 x 1072, At°=1 x 107%)

Solution Jacobiafprecond. Newton GMRES HP 735
method memory (MWORDS) iterations iterations CPU hour:
Ju P 25 341 3432 5.9
Ju Py 4.2 354 4479 10.2
JLP. (DC, 10) 4.0 DIV. DIV. DIV.

J P (DC, 2) 4.0 435 2579 22.2
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TABLE 2
Algorithm Performance Data for Problem 1, Starting from a Good Initial Guess on a 64x 32
Grid (ILU (1) Preconditioning, =5 x 1072, At°=1 x 107°)

Solution Jacobianprecond. Newton GMRES HP 735
method memory (MWORDS) iterations iterations CPU hours
JuPL 25 24 328 0.6
Jy Py 4.2 39 708 1.7
J.P. (DC, 10) 4.0 104 435 1.3

preconditioner [6, 7]. As stated, P. andJy P do not require one to stokk The ILU (1)
preconditioner (by itself) requires approximately 60% more memory than the Jacobi
J. While only [F(X)]l Will be plotted, both||éx/x|> and||F(X)|l. are used to declare
solution convergence on a given grid. On this problem we requiifgr) || < 5.0 x 10~/
and ||8x/x||» < 5.0 x 1074, We can see when comparinly P. and J4 Py, the number
of nonlinear iterations is almost identical, the number of Krylov iterationsJfpPy is
30% greater, and the CPU time fdp Py is 73% greater.The growth in the number of
Krylov iterations forJy Py is somewhat surprising, since in this option the preconditione
is derived from the high-order discretization; i.e., it is more consistent with the Jacobi
Our interpretation of this is tha®,,, (first-order upwind) provides a more stable inversion
and thus provides an improved preconditioner, even though it has a mismatch in conve
discretization withJyigh. This behavior is consistent with that observed on a combustic
problem [18]. The use of defect correctiod ), with a new Jacobian formed every
10 nonlinear iterations (DC, 10), did not converge, and a new Jacobian formation ev
two nonlinear iterations was required to enable convergence. Thus, while only 34 Jacol
evaluation were required faky Py, 218 Jacobian evaluations were requiredfoP, (DC,

2). This resulted in an increased CPU time of 275%.

Table 2 presents the same performance indicators as for Table 1 but with a much impre
initial guess. The initial guess was an interpolation of a converged 3@ grid solution.
Due to this much improved initial guess, the initial pseudo-time step was three ord
of magnitude larger. Again, in terms of both memory and CPU tithe?, is the most
efficient. This time, with the much improved initial guesk,P_ (DC, 10) was able to
converge, although with four times as many Newton iterations and Jacobian evaluati
The maximum steady-state residual is plotted as a function of Newton iteration and C
time in Fig. 5.

Tables 3 and 4 us&, P_ from Table 2 to compare the sensitivities of the inexact Newtol
parametefy in Eq. (14), and the constamtin Eq. (16), is used to evaluate the matrix-free

TABLE 3
Effect of 4 on Algorithm Performance Data for Problem 1, Starting from a Good Initial Guess
on a 64 x 32 Grid (ILU (1) Preconditioning, J4P., 7 =5 x 1072, At°=1 x 107%)

Solution Jacobiafprecond. Newton GMRES HP 735
method memory (MWORDS) iterations iterations CPU hours
w=2x10"1 2.5 35 354 0.77
¥ =5x 1072 2.5 24 328 0.6

w=1x1072 2.5 23 412 0.67
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FIG.5. Convergence history for problem 1 on a%482 grid. Initial guess was an interpolation of a 826
converged solution.

perturbatione. We can see that while there are effects changing these parameters, o\
the effects do not appear to be large.

Figures 6 and 7 compare the difference between the first-order upwind solution and
obtained with the QUICK differencing and the SMART flux-limiter, both on a 3284
gird. Figure 6 compares contour plotslofj(n,) for the last 25 cm poloidally. Figure 7
compares electron temperatufg, and plasma density;, along the separatrix for the last
25 cm poloidally. As seen in the contour plot, this solution is fairly one-dimensional witl
nearly planar ionization front. The neutral density gradient does appear somewhat sh
with the improved convective differencing. In Fig. 7 the expected behavior of impro\
convective differencing is also observed. Both profilesTofindn; appear sharper. The
structure of a recombining divertor plasma is evident in both Figs. 6 and 7. This inclu
the low plasma temperatureleV, plasma density decreasing towards the plate due
recombination, and the neutral density being larger than the plasma density at the pla

4.2. Problem2

In this problem the scale lengths are somewhat larger. The divertor slot is wider
baffling has been added in order to help contain the neutral density in the divertor re

TABLE 4
Effect of e on Algorithm Performance Data for Problem 1, Starting from a Good Initial Guess
on a 64 x 32 Grid (ILU (1) Preconditioning, J4P., At°=1 x 107%)

Solution Jacobiasprecond. Newton GMRES HP 735

method memory (MWORDS) iterations iterations CPU hour:
a=1x10" 2.5 27 378 0.65
a=1x10° 2.5 24 328 0.6

a=1x10?% 2.5 28 367 0.65
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TABLE 5
Algorithm Performance Data for Problem 2, Starting from a Converged Upwind Initial Guess
on a 128x 64 Grid (ILU (1) Preconditioning, v« =5 x 1072, At®=5 x 107°

Solution Jacobianprecond. Newton GMRES HP 735
method memory (MWORDS) iterations iterations CPU hours
Ju P 10.0 82 869 7.4
I Py 16.8 78 1218 16.8
J.P. (DC, 5) 16.0 118 396 10.9

[21]. Additionally, there is a lower upstream density and a higher upstream temperat
(and pressure), as compared to the first problem. In this problem the core density
temperatures were fixed at=5.0 x 10°°m3, T,= Ty = 200eV, and the radial transport
coefficients werd | =0.5, xj = xe = 0.5, 7, =0.2.

Table 5 presents convergence performance for this problem on a 628jrid, starting
with a converged first-order upwind solution (on the same grid) as an initial guess. The ¢
is uniform iny. It has 88 uniform poloidalx), grid cells from the null point to the divertor
plate, and 40 nonuniform poloidal grid cells from the null point to the symmetry plan
Convergence behavior, in terms of CPU time and number of iterations, is nearly ident
when starting from an interpolation of a converged-682 grid. As with problem 1, we
see thatly P_ outperformsJy Py andJ, P in both CPU time and memory requirements.
Compared to Table 2, this problem was more difficult to converge in terms of Newt
iterations. This is believed to be mostly a result of the increased structure in this probl
as compared to problem 1. For this problem (DC, 10) did not converge, but (DC, 5) ¢
Figure 8 is a plot of maximum steady-state residual as a function of Newton iteration &
CPU time. As compared to Fig. 5, we see a significant (factor of 3) increase in the num
of Newton iterations. Part of this is due to the increased size of the(f§jgl x 64 vs.

64 x 32). However, again a significant part of the increase is believed to be a result
the more complex solution structure of this problem. Large oscillations are observec

(a)
e=[ LA
(b)
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0.020 i S
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g
8

0.75 0.8 10
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FIG. 6. Contour plots of log of neutral densitit/ m®) contours for (a) first-order upwind solution and (b)
higher-order solution.
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FIG. 7. Electron temperature and density variations along separatrix for problem 1.

Fig. 8 which do not appear in Fig. 5. These can be seen to occur with the frequenc
re-evaluatingd and more importanthAt, the pseudo-time step. Here the changaimer
Jacobian re-evaluation has been limited to a factor of 10. Again, while |F(¥) || oo IS
being plotted, both|5x/x||> and ||F(X)|l. are used to declare solution convergence on
given grid. On this problem we requirgi (x)||. < 5.0 x 10~7 and||5x/x||> < 5.0 x 1074,
The large oscillations in Fig. 8 can be traced back to the sharp ionization front [8] “settl
in” on the grid.

The effect of the improved convective differencing on this problem is more pronounc
Figure 9 is a contour plot of neutral flux vectors overlayed on electron temperature cont
(1-10eV) and Fig. 10 is a contour plot dbg(n,). Figure 11 is a line plot along the
separatrix of electron temperature and plasma density, for the last 50 cm poloidally. T

109 10°

T

Ju P
Ju Py

10*

-

Maximum Steady-State Residual
g
1

Maximum Steady-State Residual

10°F

wowhe—eee e ST 4 I R R |
0 20 40 60 80 100 0 5 10 15 20

Newton Iteration CPU Time (HP-735 hours)

FIG.8. Convergence history for problem 2 on a 2284 grid. Initial guess was converged, first-order upwing
solution on the same grid.
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Y (meters)

Y {meters)

150 X (meters)

FIG. 9. Problem 2 contour plots of electron temperature (eV) contours superimposed upon neutral |
(1/m2s) vectors for (a) first-order upwind and (b) higher-order convective differencing.

results indicate that the improved accuracy in the convective differencing has enhancec
plasmarecombination. The neutral density contour@&1.0?° m—2 has moved a significant
distance, poloidally, as has the® contour forT.. Figure 11 displays a distinct difference in
the gradients of plasma temperature and density along the separatrix. Defining the ionizz
front to be the 2V contour ofT,, we can see this front has moved approximately 10 t«
13 cm poloidally.

A common measure for tokamak divertor performance, both experimentally and tl
oretically, is to look at the peak heat flux and plasma particle flux on the divertor si
face. The difference in the peak heat flux and plasma particle flux on the divertor s
face between the two solutions (different convective discretization) is about a factor of
However, the more significant impact may be with self-consistent impurity transport, st
as carbon [6], which is not considered in this study. The parallel (along B) transport

Y (meters)

o .
[0 X
p
g 0.00 k__’ﬂ/ 20 ?
~— 49 )
> 005 / r/__,_//f,/ »
1.50 X (meters) 175 2.0

FIG. 10. Contour plots of log of neutral densityi/m?) for (a) first-order upwind and (b) higher-order
convective differencing.
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FIG. 11. Electron temperature and plasma density variations along separatrix for problem 2.

plasma impurity ions is a strong function of parallel temperature and density gradients,
these quantities are seen to change drastically as seen in Fig. 11. It has been noted
ously that achieving high accuracy in the background (hydrogen) plasma solution ma
paramount if one is interested in performing self-consistent impurity ion transport simt
tions [6, 22].

5. CONCLUSIONS

A high-order convection scheme, QUICK (quadratic upstream interpolation for conv
tive kinematics) [9], along with a monotonicity preserving flux-limiter, SMART (sharp ar
monotonic algorithm for realistic transport) [10], has been applied to a combined sys
edge plasma/Navier—Stokes neutral transport equations [8] for modeling a recombi
divertor plasma. It has been shown that the existing matrix-free Newton—Krylov algorit
provides a natural frame work for the fully implicit implementation of such discretizati
schemes. It has been demonstrated that using a preconditioner derived from a first-
upwind discretization of convection can reduce both required storage and CPU time.

A solution of current interest has been shown to be sensitive to the accuracy of
convective differencing, while another solution has been shown to be relatively insensi
The two major differences between the two model problems are upstream plasma pre
and geometry. It was demonstrated in Ref. [21] that increasing the upstream plasma pre
leads to an increase in the neutral flow speeds in the divertor region, upon detachmer
increased importance of neutral convection in problem 2 (higher upstream pressure)
well explain the increased sensitivity to the improved convective differencing. Also, adc
baffling to the geometry has been shown to increase the radial neutral density gra
in the divertor region. This sharp gradient will be more sensitive to the accuracy of
convective discretization employed. A more comprehensive study will be required to be
characterize parameter regimes of sensitivity to this improved convective discretizatio
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